刘一教授解释说,“我们中学学过原子的组成,电子为什么围绕原子核转动?因为原子核有库仑场,电子不会逃走。强光场与库仑场接近甚至比它还要强多个数量级,一般在10的14次方瓦每平方厘米之上。在这样的强光照射下,电子就被电离成为自由电子了。”
“过往的研究都认为,电离之后,离子处于基态的概率更大,处于激发态的概率更小。但是实际上通过实验我们发现,离子处于激发态的概率可能更大,而处于基态的概率较小,这个强场电离新效应是人们以前不知道的。”
在强光场的作用下,空气中的分子和原子会发生隧穿电离、多能级耦合、振动态和转动态激发等复杂的非线性效应。这些效应是空气激光产生的关键。
在特定条件下,强光场引发的等离子体能够放大特定波长的光,形成空气激光。这种激光通过光学放大,最终实现稳定的激光输出。团队通过精细调控激光脉冲的能量、相位和空间分布,成功实现了空气激光的稳定产生。
控制氮离子空气激光的偏振
偏振是激光电场振动方向的一种描述,对于控制和应用激光具有重要意义。在光学通信、材料加工和生物成像等领域,激光的偏振状态能够显著影响其效果和精度。
在传统的激光研究中,偏振状态通常由激光器的设计决定。然而,空气激光的偏振特性主要受激光与气体分子相互作用的动态过程影响,这使得其偏振控制变得比较复杂。
刘一教授团队的实验结果表明,氮离子空气激光的偏振状态与泵浦光偏振、注入种子光的偏振、种子光的强度、光学放大的程度都有关系。近期的研究工作全面地理解了复杂偏振效应的主要原因,解决了一个多年悬而未决的谜题,为在各维度上进一步地控制氮离子空气激光提供了基础。
通过调整激光脉冲的参数,可以控制产生的空气激光的波长和频率。这一发现为特定应用需求的定制化激光输出提供了可能。例如,在通信领域,不同波长的激光可以用于不同的通信信道,提高通信的带宽和效率。
“空气的氮气、氧气、氩气等在合适的激发条件下,都可以发射空气激光。选择氮气一方面是因为氮气在空气中的比例最高,另一方面是氮气可以用我们超快光学实验室常见的钛宝石激光器来进行激发,做实验比较便利。”刘一教授介绍道。
助力大气污染物高灵敏检测
空气激光可以与空气中的污染物分子相互作用,通过检测并分析产生的光谱信号,就可以识别和量化污染物。
在传统光学远程探测中,通过激光激发空气中的污染物分子,使其从基态跃迁到激发态,然后返回基态时发射荧光。这个荧光信号可以被探测器收集和分析,从而识别污染物的种类和浓度。与传统激光激发荧光信号不同,空气激光是具有方向性的相干光,其可以携带待检测分子的信息,这使得其在大气环境中的传输和应用具有极大优势。
“这项发现给光学远程遥感提供了新的技术方案,这是不同于以前的传统光学遥感的新方案。这个方案有潜力极大提升大气污染物检测的灵敏度和探测极限。”刘一教授表示。
氮离子空气激光能够产生强烈的、具有方向性的光信号,而这种光信号在空气中的传播几乎不受衰减。这使得其在检测微量污染物时,具有极高的灵敏度。
在大气环境中,当某些污染物的浓度非常低时,传统的检测方法可能难以准确测定。而高灵敏度的氮离子空气激光则可以捕捉到这些微弱信号,从而实现对微量污染物的精准检测。
空气中每种污染物的光谱特性不同,通过对相互作用后氮离子空气激光光谱的精细分析,可以准确区分不同污染物的成分。利用这种方法,可以在复杂的空气环境中实现对多种污染物同时进行高分辨率检测和分析。
“传统的空气污染物检测方法通常需要采样、运输、实验室分析等多个步骤,耗时较长,难以实现实时监测。而空气激光技术可以在大气中直接生成和检测光信号,具有即时性和便捷性的优势。这种实时监测能力对于应对突发的空气污染事件,提供了快速响应和决策支持的可能性。”